

Regioselective Mukaiyama hydroperoxysilylation of 2-alkyl- or 2-aryl-prop-2-en-1-ols: application to a new synthesis of 1,2,4-trioxanes

Paul M. O'Neill, a,* Matthew Pugh, Jill Davies, Stephen A. Ward and B. Kevin Park

^aDepartment of Chemistry, The Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, UK

^bDepartment of Pharmacology, University of Liverpool, Liverpool L69 3GE, UK

^cSchool of Tropical Medicine, Pembroke Place, University of Liverpool, Liverpool L3 5QA, UK

Received 15 February 2001; accepted 11 May 2001

Abstract—Co(II)-mediated peroxysilylation of allylic alcohols 6 or 9 regioselectively provides peroxysilyl alcohols 7 and 10 in good yield. Reaction of these peroxysilyl alcohols with aldehydes or ketones provides target 1,2,4-trioxanes in good to excellent yields. The sequence of Markovnikov hydroperoxysilylation and subsequent reaction with a carbonyl compound can also be readily achieved in a one-pot procedure. Significantly, easily prepared trioxanes 11a and 11b have potent in vitro antimalarial activity versus chloroquine resistant K1 *Plasmodium falciparum*. © 2001 Elsevier Science Ltd. All rights reserved.

Malaria is one of the world's most deadly diseases and is becoming an increasingly serious problem as malaria parasites develop resistance to quinoline-containing drugs such as chloroquine (1). There is, therefore, considerable urgency to develop new classes of antimalarials.^{1,2}

Artemisinin (2) (qinghaosu) is an unusual 1,2,4-trioxane which has been used clinically in China for the treatment of multidrug resistant *Plasmodium falciparum* malaria. The 1,2,4-trioxane pharmacophore is essential for biological activity and many synthetic derivatives have been prepared that contain this group. These include the 1,2,4-trioxane derivative fenozan BO-7 (3)³ and the C-3-aryl 1,2,4-trioxanes (e.g. 4, R=F).⁴

Although semi-synthetic analogues such as 3 and 4 have excellent antimalarial properties, the overall yields of analogues in both classes are low. As a result there is much need for the development of new and improved approaches to the antimalarial 1,2,4-trioxane pharmacophore. Literature methods for the synthesis of the 1,2,4-trioxane sub-unit include the reaction of dioxetanes with carbonyls in the presence of Lewis acids, 5 acid-catalysed cyclisation of hydroperoxyacetals 6 with olefins and reactions of α -peroxy aldehydes with car-

bonyl compounds.⁷ All of these routes provide the trioxane in low overall yield.

For the synthesis of trioxanes of the type **5b**, reported literature methods involve acid-catalysed perhydrolysis (98% H₂O₂!) of epoxides followed by cyclisation of key peroxy alcohols **5a** with carbonyl partners (Scheme 1).⁸

In this paper, we report on a new, general and much milder approach to the synthesis of target trioxanes **5b**, which not only avoids the use of potentially hazardous hydrogen peroxide solutions but also enables trioxanes with potent activity in the nanomolar range, to be easily prepared in two simple chemical steps in a one-pot procedure.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)00791-2

NEt₂

NEt₂

NEt₂

NEt₂

NEt₂

NEt₂

NEt₂

NEt₂

A

^{*} Corresponding author. E-mail: p.m.oneill01@liv.ac.uk

Scheme 1.

R
$$Et_3SiH$$
 RT/O_2 RT/O_2

Scheme 2.

Our approach makes use of the highly regioselective 'Markovnikov' reaction of alkenes with molecular oxygen (O₂), triethylsilane and Co(acac)₂ as catalyst to give triethylsilyl peroxides in high yield (Scheme 2).⁹⁻¹¹ We reasoned that the use of 2-substituted allylic alcohols (e.g. 6), in this reaction, would lead to key triethylsilyl protected peroxyalcohols required for reaction with an appropriate carbonyl compound. Oh has recently shown that hydroperoxysilylation of cinnamyl alcohol gives a peroxysilyl alcohol, which is a precursor of the seven-membered 1,2,4-trioxepane system.¹² However, to date, there have been no reports of the use of the 'Mukaiyama–Isayama' hydroperoxysilylation procedure for the synthesis of trioxanes of the general structure 5b.

We were pleased to find that under the conditions of Mukaiyama and Isayama [Co(acac)₂, Et₃SiH, O₂, RT], commercially available 2-methyl-2-propen-1-ol (6) was readily converted to 2-triethylsilylperoxy-2-methylpropan-1-ol (7) in 60% yield (Scheme 3). The alcohol 7 was purified by silica gel chromatography and was accompanied by minor amounts of the corresponding diol, which presumably arises via Co(II)-mediated reduction of the peroxysilyl alcohol.⁹

Alcohol 7 was smoothly coupled with a range of carbonyl substrates. Yields were generally good for the formation of target trioxanes (Table 1, 40–90%) using aldehydes (entries 1–5) or ketones (entries 6–9). For the preparation of trioxanes **8f–i**, separate purification of 7 was not required and a one-pot peroxysilylation/cyclisation using crude 7 and an appropriate ketone gave the target trioxanes in good yield after flash column chromatography.

Based on these observations, we decided to investigate other alcohol substrates. Peroxysilylation of 2-phenyl-

HO

CH₃

$$CO(acac)_2/$$
 Et_3SiH
 RT/O_2
 Et_3Si

HO

 CH_3
 $O-O$
 CH_3
 CH_3

Scheme 3.

prop-2-en-1-ol (9) under standard conditions followed by addition of cyclopentanone or cyclohexanone provided target 1,2,4-trioxanes 11a and 11b in 42 and 54% overall yield following chromatography (Scheme 4 and Table 2).

Ph
$$Et_3SiH$$
 Et_3SiH Et_3Si Et_3S

Scheme 4.

Table 1. Synthesis of 1,2,4-trioxanes

	Carbonyl compound	Product	Yield (%)
1	Benzaldehyde	8a $(R = H, R^1 = Ph)$	65 ¹³
	<i>p</i> -Fluorobenz- aldehyde	8b (R = H, R ¹ = p -F-Ar)	90^{14}
3	<i>p</i> -Nitrobenz- aldehyde	8c (R=H, R ¹ = p -NO ₂ -Ar)	40
ļ	<i>p</i> -Phenylbenz-aldehyde	8d (R = H, R ¹ = p -Ph-Ph)	73
5	Furfuraldehyde	8e	65
)	Cyclohexanone	8f (R, $R^1 = -CH_2(CH_2)_3CH_2$ -)	53 ^a
7	Acetophenone	$R = -CH_2(CH_2)_3CH_2$ -) 8g (R = Me, R ¹ = Ph)	50a
3	<i>p</i> -Fluoroaceto- phenone	8h (R = Me, R ¹ = p -F-Ar)	42 ^a
9	phonone	∕ −Ph	40^{15}
	Ph	PH CH ₃	

^a Yields are for a one-pot procedure.

Table 2. Synthesis and antimalarial activity of trioxanes 11a and 11b

	Ketone (R)	Product	Yield (%)	IC ₅₀ versus K1 P. falciparum (nM)
1	Cyclopentanone	11a $n = 4$	4216	94.9
2	Cyclohexanone	11b $n = 5$	54 ¹⁷	135.1
				Chloroquine 276.2
				Artemether 9.2
				Artemisinin 14.2

Antimalarial testing, versus the chloroquine resistant K1 strain in vitro, revealed that easily prepared trioxanes, 11a and 11b, have potent antimalarial activity: trioxane 11a is only six-fold less potent than the structurally more complex natural product artemisinin and represents an excellent lead for further studies.

In summary, this paper describes a new approach to 1,2,4-trioxanes **5b** which is superior to existing routes in terms of convenience and overall yield. The chemistry should be applicable to the cost-effective synthesis of many new trioxane-containing drug candidates for biological screening.

Acknowledgements

This work was supported by grants from the EPSRC (M.P.) (Pfizer Case Award, Sandwich, Kent) and the BBSRC (J.D.) (26/B13581). B.K.P. is a Wellcome Principal Fellow.

References

- 1. TDR News (News from the WHO Division of Control of Tropical Diseases) **1994**, *46*, 5.
- 2. Foley, M.; Tilley, L. Int. J. Parasitol. 1997, 27, 213–240.
- 3. Jefford, C. W.; Kohmoto, S.; Jaggi, D.; Timari, J.; Rossier, J. C.; Rudaz, M.; Barbuzzi, O.; Gerard, D.; Burger, U.; Kamalaprija, P.; Mareda, J.; Bernardinelli, G.; Manzanares, I.; Canfield, C. J.; Fleck, S. L.; Robinson, B. L.; Peters, W. Helv. Chim. Acta 1995, 78, 647–662.
- Posner, G. H.; Cumming, J. N.; Woo, S.-H.; Ploypradith, P.; Xie, S.; Shapiro, T. A. J. Med. Chem. 1998, 41, 940–951.
- Bloodworth, A. J.; Shah, A. Chem. Commun. 1991, 947– 948
- Posner, G. H.; Oh, C. H.; Gerena, L.; Milhous, W. K. J. Med. Chem. 1992, 35, 2459–2467.
- Jung, M.; Li, X.; Bustos, D. A.; ElSohly, H. N.; Mc Chesney, J. D.; Milhous, W. K. J. Med. Chem. 1990, 33, 1516–1518.

- Subramanyam, V; Brizuela, C. L.; Soloay, A. H. Chem. Commun. 1976, 508–509.
- 9. Isayama, S. Bull. Chem. Soc. Jpn. 1990, 63, 1305-1310.
- 10. Isayama, S.; Mukaiyama, T. Chem. Lett. 1989, 573-576.
- Xu, X.-X.; Dong, H.-Q. Tetrahedron Lett. 1994, 35, 9429–9432.
- Oh, C. H.; Kang, J. H. Tetrahedron Lett. 1998, 39, 2771–2774.
- Compound 8a: ¹H NMR (300 MHz, CDCl₃): δ 7.50 (2H, m, Ar), 7.38 (3H, m, Ar), 6.03 (1H, s, CH), 3.82 (2H, dd, J=24.6, 11.4 Hz, CH₂), 1.62 (3H, s, CH₃), 1.14 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 134.70, 129.98, 128.54, 127.09, 104.01, 77.41, 73.70, 22.43, 21.83; ν_{max} (Nujol mull): 2978.2 (C–H), 1455.9 (Ar), 1088.7 (C–O) cm⁻¹; MS m/z, found 194.09445. C₁₁H₁₄O₃ requires 194.09428; found: C, 68.17; H, 7.31; requires C, 68.02; H, 7.26%.
- 14. Compound **8b**: ¹H NMR (300 MHz, CDCl₃): δ 7.50 (2H, m, Ar), 7.09 (2H, m, Ar), 6.01 (1H, s, CH), 3.83 (2H, dd, J=25.1, 11.3 Hz, CH₂), 1.62 (3H, s, CH₃), 1.15 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 163.77 ($^{1}J_{CF}$ =247.3 Hz), 130.69 ($^{4}J_{CF}$ =2.9 Hz), 129.09 ($^{3}J_{CF}$ =8.0 Hz), 115.49 ($^{2}J_{CF}$ =21.7 Hz), 103.29, 77.40, 73.70, 22.40, 21.81; ν_{max} (Nujol mull): 2978.5 (C–H), 1455.4 (Ar), 1085.6 (C–O) cm⁻¹; MS m/z, found 212.08492. C₁₁H₁₃FO₃ requires 212.08487; found: C, 62.47; H, 6.26; requires C, 62.26; H, 6.17%.
- 15. Compound **8i**: ¹H NMR (300 MHz, CDCl₃): δ 7.54–7.05 (10H, m, Ar), 3.55 (2H, dd, J=37.4, 11.1 Hz, CH₂), 2.69 (2H, m, CH₂), 2.09 (2H, m, CH₂), 1.60 (3H, s, CH₃), 0.93 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃): δ 141.71, 139.38, 128.35, 127.99, 127.27, 125.89, 105.10, 77.14, 67.83, 29.05, 22.60, 22.17; $\nu_{\rm max}$ (Nujol mull): 2923.3 (C–H), 1458.1 (Ar), 1064.4 (C–O) cm⁻¹; MS m/z, found 298.15794. C₁₉H₂₂O₃ requires 298.15689; found: C, 76.44; H, 7.49; requires C, 76.48; H, 7.43%.
- 16. Compound **11a**: ¹H NMR (400 MHz, CDCl₃): δ 7.37 (5H, m, Ar), 4.01 (2H, brm, CH₂), 1.93–0.90 (11H, brm); MS m/z, found 235.13393. C₁₄H₁₉O₃ [M+H]⁺ requires 235.13342; found: C, 71.88; H, 7.94; requires C, 71.77; H, 7.74%.
- 17. Compound 11b: ¹H NMR (400 MHz, CDCl₃): δ 7.36 (5H, m, Ar), 4.21 (2H, brm, CH₂), 1.86–0.92 (13H, brm); ν_{max} (Nujol mull): 2923.9 (C–H), 1452.5 (Ar), 1094.3 (C–O) cm⁻¹; MS m/z, found 249.14971. C₁₅H₂₁O₃ [M+H]⁺ requires 249.14907; found: C, 72.70; H, 8.18; requires C, 72.55; H, 8.12%.